Compostos Vegetais nas Atividades Antienvelhecimento
publicado em 10/06/2025
B Juara Carvalho Brandão, E Sabóia Guerra Diógenes, T Gonçalves de Araújo
Departamento de Farmácia, Universidade Federal do Ceará, Fortaleza CE, Brasil
O objetivo deste estudo de revisão é relacionar os compostos vegetais com atividade sobre as enzimas colagenase, elastase, hialuronidase e tirosinase, por meio de modelos experimentais in vitro, para um melhor entendimento sobre o mecanismo de ação do uso de ativos vegetais como inibidores do envelhecimento cutâneo e clareadores da pele.
The objective of this literature review study is to relate plant compounds with activity on the enzyme collagenase, elastase, hyaluronidase and tyrosinase, through in vitro experimental models, for a better understanding of the mechanism of action of the use of plant actives as inhibitors of skin aging and as skin lighteners.
El objetivo de este estudio de revisión de literatura es relacionar los compuestos vegetales con actividad sobre las enzimas colagenasa, elastasa, hialuronidasa y tirosinasa, a través de modelos experimentales in vitro, para una mejor comprensión del mecanismo de acción del uso de activos vegetales como inhibidores del envejecimiento cutáneo y como aclaradores de la piel.
A pele funciona como interface externa do corpo humano com o meio ambiente. É sede de muitos processos complexos e dinâmicos, incluindo: funções de barreira e imunológicas, produção de melanina, síntese de vitamina D e regulação térmica. É composta de duas camadas: epiderme, derme e pelo tecido subcutâneo (ou hipoderme).1,2
A epiderme, que é a camada mais externa, é composta principalmente de queratinócitos, mas também contém melanócitos (produzem melanina para a proteção contra a radiação ultravioleta), células de Langherans (importantes na modulação da resposta imune adaptativa) e células de Merkel (especializadas, com função neuroendócrina). É avascularizada e dividida em quatro camadas ou estratos, sendo: estrato basal, estrato espinhoso, estrato granuloso e estrato córneo.2,3
A derme fica entre a epiderme e o tecido subcutâneo, representa a maior parte da pele e é composta de elementos do tecido conjuntivo: colágeno, elastina, glicosaminoglicanos, denominados coletivamente de matriz extracelular (MEC), bem como de fibroblastos, que são as células predominantes e responsáveis pela produção e pela organização da MEC. A derme é altamente vascularizada e inclui unidades pilossebáceas, glândulas sudoríparas, células adiposas dérmicas, mastócitos e leucócitos infiltrados.3,4 É dividida em duas camadas histologicamente distintas: derme papilar e derme reticular. A derme papilar é uma zona fina que subjaz e suporta fisicamente a epiderme. Em contraste, a derme reticular é caracterizada pelo entrelaçamento de fibras colágenas e fibras elásticas espessas, que conferem força e resiliência à pele.5
Para visualizar o restante do artigo faça seu login ou então se cadastre gratuitamente e acesse todo o conteúdo disponível.
1. Calleja-Agius J, Muscat-Baron Y, Brincat MP. Skin age ing. Menopause Intern 13(2):60–64, 2007. DOI: https://doi. org/10.1258/175404507780796325
2. Bohjanen K. Estrutura e funções da pele. Dermatologia Clínica. Seção I Bases para diagnóstico e tratamento, 2017. Disponível em: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www. booki.pt/userfiles/files/loja/preview/9788580553796.pdf. Acesso em: 24/3/2025
3. Losquadro WD. Anatomy of the Skin and the Pathogenesis of Non melanoma Skin Cancer. Facial Plastic Surg Clinics of North America 25(3):283–289, 2017. DOI: https://doi.org/10.1016/j.fsc.2017.03.001
4. Menon GK. New insights into skin structure: Scratching the surface. Advanced Drug Delivery Rev 54(suppl.):S3, 2002. DOI: https://doi. org/10.1016/S0169-409X(02)00121-7
5. Sorrell JM, Baber MA, Caplan AI. Site-matched papillary and reticular human dermal fibroblasts differ in their release of specific growth factors/cytokines and in their interaction with keratinocytes. J Cellular Physiology 200(1):134–145, 2004. DOI: https://doi.org/10.1002/ jcp.10474
6. Cunha MG, Cunha ALG, Machado CA. (2014). Hipoderme e tecido adiposo subcutâneo: duas estruturas diferentes. Surg Cosmet Dermatol 6(4):355–364, 2014
7. Silva TF, Penna ALB. Colágeno: Características químicas e propriedades funcionais. Rev do Instituto Adolfo Lutz 71(3):530–539, 2012
8. Sibilla S, Godfrey M, Brewer S, Budh-Raja A, Genovese L. An overview of the beneficial effects of hydrolysed collagen as a nutraceutical on skin properties: Scientific background and clinical studies. Open Nutraceuticals J 8(1)29–42, 2015. DOI: https://doi. org/10.2174/1876396001508010029
9. Nunes Alves APN, Lima Verde MEQ, Ferreira Júnior AEC, Barros Silva PG, Pinheiro Feitosa V, Lima Júnior EM, Borges de Miranda MJ, Moraes Filho MO. Avaliação microscópica, estudo histoquimimico e análise de propriedades tensiométricas da pele de tilápia do Nilo. Rev Bras Queimaduras 14(3):203–210, 2015
10. Shiratsuchi E, Nakaba M, Yamada M. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions. J Science of Food and Agric 96(5):1672–1677, 2016. DOI: https://doi.org/10.1002/jsfa.7270
11. Rieger M. O envelhecimento intrínseco. Cosm & Toil Ed Port 8(4):34 50, 1996
12. Mora Huertas AC, Schmelzer CEH, Luise C, Sippl W, Pietzsch M, Hoehenwarter W, Hein A. Degradation of tropoelastin and skin elastin by neprilysin. Biochimie 146:73–78, 2018. DOI: https://doi. org/10.1016/j.biochi.2017.11.018
13. Lee JH, Moon SH, Hong Y, Ahn DU, Paik HD. Anti-elastase and anti-hyaluronidase activity of phosvitin isolated from hen egg yolk. Br Poultry Sci 61(1):17–21, 2020. DOI: https://doi.org/10.1080/000 71668.2019.1686124
14. Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology 4(3):253–258, 2012. DOI: https://doi.org/10.4161/derm.21923
15. Gonchoroski DD, Correa GM. Tratamento de hipercromia pós--inflamatória com diferentes formulações clareadoras. Infarma 17(3/4):84–88, 2005
16. Miot LDB, Miot HA, da Silva MG, Marques MEA. Fisiopatologia do melasma. Anais Brasil Dermat 84(6):623–635, 2009. DOI: https:// doi.org/10.1590/S0365-05962009000600008
17. Ito S. A chemist’s view of melanogenesis. Pigment Cell Res 16:230 6, 20303
18. Araújo RVS, Silva FO, Melo-Júnior MR, Porto ALF. Metaloproteinases: aspectos fisiopatológicos sistêmicos e sua importância na cicatrização. Rev Ciênc Méd e Biol 10(1):82, 2011. DOI: https://doi. org/10.9771/cmbio.v10i1.5470
19. Bogdanowicz P, Haure MJ, Ceruti I, Bessou-Touya S, Castex-Rizzi N. Results from in vitro and ex vivo skin aging models assessing the antiglycation and anti-elastase MMP-12 potential of glycylglycine oleamide. Clin, Cosm and Investig Dermat 9:143–150, 2016. DOI: https://doi.org/10.2147/CCID.S98633
20. Lee CW, Choi HJ, Kim HS, Kim DH, Chang IS, Moon HT, Lee SY, Oh WK, Woo ER. Biflavonoids isolated from Selaginella tamariscina regulate the expression of matrix metalloproteinase in human skin f ibroblasts. Bioorganic and Med Chem 16(2):732–738, 2008. DOI: https://doi.org/10.1016/j.bmc.2007.10.036
21. Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology 4(3):253–258, 2012. DOI: https://doi.org/10.4161/derm.21923
22. Vieira LM, Castro CFS, Dias ALB, Silva AR. Fenóis totais, atividade antioxidante e inibição da enzima tirosinase de extratos de Myracrodruon urundeuva Fr. All. (Anacardiaceae). Rev Brasil de Plant Med 17(4):521–527, 2015. DOI: https://doi.org/10.1590/1983--084X/13_033
23. Karioti A, Protopappa A, Megoulas N, Skaltsa H. Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum. Bioorganic and Med Chem 15(7):2708–2714, 2007. DOI: https://doi.org/10.1016/j.bmc.2007.01.035
24. Madan K, Nanda S. In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging. Bio organic Chem 77:159–167, 2018. DOI: https://doi.org/10.1016/j. bioorg.2017.12.030
25. Lee JH, Moon SH, Hong Y, Ahn DU, Paik HD. Anti-elastase and anti-hyaluronidase activity of phosvitin isolated from hen egg yolk. Br Poultry Scie 61(1):17–21, 2020. DOI: https://doi.org/10.1080/00 071668.2019.1686124
26. Rigon Zimmer K, Luís Borré G, da Silva Trentin D, Woicickoski Júnior C, Piccoli Frasson A, de Arruda Graeff A, Gomes P, José Macedo A. Enzimas microbianas de uso terapêutico e diagnóstico clínico. Rev Liberato 10(14):123–137, 2009. DOI: https://doi.org/10.31514/ rliberato.2009v10n14.p123
27. Bahadır Acıkara Ö, Ilhan M, Kurtul E, Šmejkal K, Küpeli Akkol E. Inhibitory activity of Podospermum canum and its active components on collagenase, elastase and hyaluronidase enzymes. Bioorganic Chem, 93(August), 103330, 2019. DOI: https://doi.org/10.1016/j. bioorg.2019.103330
28. Zar Wynn Myint K, Kido T, Kusakari K, Prasad Devkota H, Kawaha ra T, Watanabe T. (2019). Rhusflavanone and mesuaferrone B: tyrosinase and elastase inhibitory biflavonoids extracted from the stamens of Mesua ferrea L. Natural Product Res 1–5, 2019. DOI: https://doi.org/10.1080/14786419.2019.1613395
29. Jena K, Pandey JP, Kumari R, Sinha AK, Gupta VP, Singh GP. Tasar silk fiber waste sericin: New source for anti-elastase, anti-tyrosinase and antioxidant compounds. In Inter J Biological Macromolecules (Vol 114). Elsevier BV, 2018. DOI: https://doi.org/10.1016/j.ijbio mac.2018.03.058
30. Fayad S, Tannoury M, Morin P, Nehmé R. (2018). Simultaneous elastase, hyaluronidase and collagenase-capillary electrophoresis based assay. Application to evaluate the bioactivity of the red alga Jania rubens. Analytica Chimica Acta, 1020:134–141, 2018. DOI: https://doi.org/10.1016/j.aca.2018.03.004
31. Nantarat N, Mueller M, Lin WC, Lue SC, Viernstein H, Chansakaow S, Sirithunyalug J, Leelapornpisid P. Sesaminol diglucoside isolated from black sesame seed cake and its antioxidant, anti-collagenase and anti-hyaluronidase activities. Food Bioscience, 36:100628, 2019. DOI: https://doi.org/10.1016/j.fbio.2020.100628
32. Pirela F, Caballero A, Martínez C. (2019). Hialuronidasa . Uso e indicaciones en dermatología Hyaluronidase. Use and indications in dermatology. Summary Dermatología Estética 57:41–48, 2019
33. Trindade de Almeida AR, Flávia A, Saliba N, Regina A, de Almeida T. Hialuronidase na cosmiatria: o que devemos saber? Surg Cosmet Dermatol 7(3):197–20, 2015
34. Deniz FSS, Salmas RE, Emerce E, Cankaya IIT, Yusufoglu HS, Orhan IE. (2020). Evaluation of collagenase, elastase and tyrosinase inhibitory activities of Cotinus coggygria Scop. through in vitro and in silico approaches. S African J of Botany 132:277–288, 2020. DOI: https://doi.org/10.1016/j.sajb.2020.05.017
35. Islam S, Alam MB, Ahmed A, Lee S, Lee SH, Kim S. (2020). Identification of secondary metabolites in Averrhoa carambola L. bark by high-resolution mass spectrometry and evaluation for α-glucosidase, tyrosinase, elastase, and antioxidant potential. Food Chemistry, 332, 127377, 2020. DOI: https://doi.org/10.1016/j.foodchem.2020.127377
36. Sharma S-YS, Vinay K, Sharma N. Mushroom tyrosinase: recent prospects. J Agricul and Food Chem 51:2837–2853, 2003
37. Jung S, Kim DH, Son JH, Nam K, Ahn DU, Jo C. The functional property of egg yolk phosvitin as a melanogenesis inhibitor. Food Chemistry, 135(3):993–998, 2012. DOI: https://doi.org/10.1016/j. foodchem.2012.05.113
38. Angelis A, Mavros P, Nikolaou PE, Mitakou S, Halabalaki M, Skalt sounis L. Phytochemical analysis of olive flowers’ hydroalcoholic extract and in vitro evaluation of tyrosinase, elastase and collage nase inhibition activity. Fitoterapia 143(April), 2020. DOI: https://doi. org/10.1016/j.fitote.2020.104602
39. Horng CT, Wu HC, Chiang NN, Lee CF, Huang YS, Wang HY, Yang JS, Chen FA. Inhibitory effect of burdock leaves on elastase and tyrosinase activity. Exper and Therap Med 14(4):3247–3252, 2017. DOI: https://doi.org/10.3892/etm.2017.4880
40. Ito J, Hara K, Someya T, Myoda T, Sagane Y, Watanabe T, Wije sekara RGS, Toeda K, Nojima S. Data on the inhibitory effect of traditional plants from Sri Lanka against tyrosinase and collagenase. Data in Brief 20:573–576, 2018. DOI: https://doi.org/10.1016/j. dib.2018.08.143
41. Liyanaarachchi GD, Samarasekera JKRR, Mahanama KRR, Hemalal KDP. Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Indust Crops and Products 111(October):597–605, 2017. DOI: https://doi.org/10.1016/j.indcrop.2017.11.019
42. Madan K, Nanda S. (2018). In-vitro evaluation of antioxidant, anti elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging. Bio organic Chemistry 77:159–167, 2018. DOI: https://doi.org/10.1016/j. bioorg.2017.12.030
43. Chiocchio I, Mandrone M, Sanna C, Maxia A, Tacchini M, Poli F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind Crops and Prod 122(June):498–505, 2018. DOI: https://doi.org/10.1016/j. indcrop.2018.06.029
44. Genc Y, Dereli FTG, Saracoglu I, Akkol EK. The inhibitory effects of isolated constituents from Plantago major subsp. major L. on col Vol. 37, mai-jun 2025 lagenase, elastase and hyaluronidase enzymes: Potential wound healer. Saudi Pharmaceutical J 28(1):101–106, 2020. DOI: https:// doi.org/10.1016/j.jsps.2019.11.011
45. Eun Lee K, Bharadwaj S, Yadava U, Gu Kang S. Evaluation of caffeine as inhibitor against collagenase, elastase and tyrosinase using in silico and in vitro approach. J Enzyme Inhibition and Med Chem 34(1):927–936, 2019. DOI: https://doi.org/10.1080/147563 66.2019.1596904
46. Shirzad M, Hamedi J, Motevaseli E, Modarressi MH. Anti-elastase and anti-collagenase potential of Lactobacilli exopolysaccharides on human fibroblast. Artificial Cells, Nanomedicine and Biotechnology 46(sup1):1051–1061, 2018. DOI: https://doi.org/10.1080/2169140 1.2018.1443274
47. Pientaweeratch S, Panapisal V, Tansirikongkol A. Antioxidant, anti collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications. Pharmaceutical Biology 54(9):1865–1872, 2016
48. Chatatikun M, Chiabchalard A. Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti collagenase activity. BMC Complem and Altern Med 17(1):1–9, 2017. DOI: https://doi.org/10.1186/s12906-017-1994-7
49. Kumar JP, Mandal BB. Inhibitory role of silk cocoon extract against elastase, hyaluronidase and UV radiation-induced matrix metallopro teinase expression in human dermal fibroblasts and keratinocytes. Photochemical and Photobiological Sciences 18(5):1259–1274, 2019. DOI: https://doi.org/10.1039/c8pp00524a
50. Andrade JM, Domínguez-Martín EM, Nicolai M, Faustino C, Rodrigues LM, Rijo P. Screening the dermatological potential of plectranthus species components: antioxidant and inhibitory capacities over elastase, collagenase and tyrosinase. J Enzyme Inhib Med Chem 36(1):257-269, 2021. DOI: https://doi.org/10.1080/14756366.2020 .1862099. PMID: 33322969; PMCID: PMC7808741.
51. Neimkhum W, Anuchapreeda S, Lin WC, Lue SC, Lee KH, Chaiyana W. Effects of Carissa carandas Linn. Fruit, pulp, leaf, and seed on oxidation, inflammation, tyrosinase, matrix metalloproteinase, elas tase, and hyaluronidase inhibition. Antioxidants 10(9):1345, 2021. DOI: https://doi.org/10.3390/antiox10091345. PMID: 34572978; PMCID: PMC8470603.
52. Ambarwati NSS, Armandari MO, Widayat W, Desmiaty Y, Elya B, Arifianti AE, Ahmad I. In vitro studies on the cytotoxicity, elastase, and tyrosinase inhibitory activities of tomato (Solanum lycopersicum Mill.) extract. J Adv Pharm Technol Res 13(3):182-186, 2022. DOI: https://doi.org/10.4103/japtr.japtr_49_22. Epub 2022 Jul 5. PMID: 35935694; PMCID: PMC9355053.
53. Jiamphun S, Chaiyana W. Enhanced antioxidant, hyaluronidase, and collagenase inhibitory activities of glutinous rice husk extract by aqueous enzymatic extraction. Molecules 27(10):3317, 2022. DOI: https://doi.org/10.3390/molecules27103317. PMID: 35630792; PMCID: PMC9143893.
54. Hering A, Stefanowicz-Hajduk J, Gucwa M, Wielgomas B, Ochocka JR. Photoprotection and antiaging activity of extracts from honey bush (Cyclopia sp.)- in vitro wound healing and inhibition of the skin extracellular matrix enzymes: tyrosinase, collagenase, elastase and hyaluronidase. Pharmaceutics 15(5):1542, 2023. DOI: https:// doi.org/10.3390/pharmaceutics15051542. PMID: 37242784; PMCID: PMC10221029


Deixar comentário
Para comentar é preciso fazer login no sistema.