Proteção Solar mais Segura – Parte 1
publicado em 09/04/2020
John Stakek
CoValence Laboratories, Inc. Chandler, AZ, EUA
Shyam Gupta, PhD
Bioderm Research, Scottsdale, AZ, EUA
Tem havido cada vez mais preocupação com a segurança dos tradicionais protetores solares em relação à pele humana e ao meio ambiente. Este artigo analisa essas preocupações. O conhecimento dessas dúvidas levanta novos conceitos e abordagens em relação aos protetores solares. A Parte II irá destacar essas ideias.
Concerns have been raised over the safety of traditional sunscreens to human skin and the environment. These are reviewed here. Understanding these concerns provides insight on new concepts and approaches for sunscreens. Part II will highlight these ideas.
Se han expresado preocupaciones sobre la seguridad de los protectores solares tradicionales para la piel humana y el medio ambiente. Estos son revisados aquí. Comprender estas preocupaciones proporciona una idea de los nuevos conceptos y enfoques para los protectores solares. La Parte II resaltará estas ideas.
Por que usar Filtros Solares? | Estratégias de Proteção | Após a Aplicação e a Exposição | Potenciais Efeitos Colaterais | Presença Ambiental | Outras Preocupações
Atualmente, os cuidados com o Sol devem ir além dos óculos escuros e das loções com altos valores de FPS. Consumidores, profissionais de marketing e a comunidade científica buscam meios de proteção não somente contra a radiação de todos os espectros, mas também contra outros agentes perigosos para os seres humanos, como peróxidos, nitrogênio e óxidos sulfúricos, radicais livres e outras moléculas ativadas pela atividade solar, incluindo o ozônio, que podem estar na atmosfera ou ser produzidos pelo nosso organismo.
Espécies reativas oxigenadas e nitrogenadas são representadas por radicais aniônicos superóxidos, como hidroxila, alcoxila e radicais peroxila lipídicos, como óxido nítrico e peroxinitrito.1 A formação desses agentes pelo organismo pode ocorrer pela atuação do Sol, da umidade, de absorvedores de UV, e por ingredientes fotoinstáveis que sejam inadvertidamente formulados ou gerados in loco em produtos de cuidados com a pele. O contato desses agentes com a pele humana pode deflagrar uma cascata de respostas inflamatórias.
Já foi constatado que nanopartículas do óxido de zinco, por exemplo, induzem estresse oxidativo e nitrosativo nos monócitos humanos, levando a uma maior resposta inflamatória do organismo por meio da ativação dos caminhos sinalizadores da redox sensível NF-KB e MAPK.2 Também já foi demonstrado que nanopartículas de dióxido de titânio, em um teste de bioensaio celular, aumentam, proporcionalmente à sua dose, a lesão ao DNA, a peroxidação lipídica e a carbonilação da proteína, além de reduzir significativamente as atividades de superóxidos dismutase e catalase, os níveis totais de glutationa e a capacidade antioxidante total – todos indicadores de estresse oxidativo.3 A ampla aplicação de nanopartículas de óxido de zinco e de dióxido de titânio em, por exemplo, cosméticos, tintas, biossensores, excipientes de medicamentos, embalagens de alimentos e agentes anticâncer também eleva o risco de exposição humana a esses materiais.
Também tem se avolumado o conhecimento de como as alterações induzidas por UV estão envolvidas na imunossupressão e na cascata de eventos relacionada com o câncer de pele não melanoma. Por outro lado, esse conhecimento traz consigo um vislumbre do desenvolvimento de estratégias para garantir uma proteção mais efetiva.4
No entanto, também existe a crendice de que “quanto maior é o FPS, melhor é o protetor solar”. Na verdade, o produto com
Para visualizar o restante do artigo faça seu login ou então se cadastre gratuitamente e acesse todo o conteúdo disponível.
1. Pisoschi et al. The role of antioxidants in the chemistry of oxidative stress: A review, Eur J Med Chem 97(5):55-74, 2015. Doi:10.1016/j. ejmech.2015.04.040
2. Senepati et al. ZnO nanoparticles induced infl ammatory response and genotoxicity in human blood cells: A mechanistic approach, Food Chem Toxicol 85(11):61-70, 2015. 10.1016/j.fct.2015.06.018
3. Dubey et al. Oxidative stress and nano-toxicity induced by TiO2 and ZnO on WAG cell line, PLoS One 10(5), 2015. doi:10.1371/journal. pone.0127493
4. Prasad et al. Crosstalk among UV-induced infl ammatory mediators, DNA damage and epigenetic regulators facilitates suppression of the immune system, Photochem Photobiol 93(4):930-936, 2017. doi:10.1111/php.12687; Pillai et al. Ultraviolet radiation and skin aging: Roles of reactive oxygen species, infl ammation and protease activation, and strategies for prevention of inflammation- induced matrix degradation — A review, Int J Cosmet Sci 27(1):17-34. doi:10.1111/j.1467-2494.2004.00241.x; ncbi.nlm.nih.gov/pubmed/1849217; Dacup et al. Impact of the circadian clock on UV-induced DNA damage response and photocarcinogenesis, Photochem Photobiol 12, 2016. doi:10.1111/php.12662
5. Autier. Sunscreen abuse for intentional sun exposure, Br J Dermatol 161 suppl (3):40-5. doi:10.1111/j.1365 2133.2009.09448.x; Chesnut et al. Is there truly no benefit with sunscreen use and basal cell carcinoma? A critical review of the literature and the application of new sunscreen labeling rules to real-world sunscreen practices, J Skin Cancer 480985 ,2012. doi:10.1155/2012/480985
6. Thieden et al. Sunscreen use related to UV exposure, age, sex and occupation based on personal dosimeter readings and sun-exposure behavior diaries, Arch Dermatol 141(8):967-73, 2005. https://ncbi.nlm.nih.gov/pubmed/16103325
7. Cefali et al. Plant-based active photoprotectants for sunscreens, Int J Cosmet Sci 38(4):346-53, 2016. doi:10.1111/ics.12316; cbi.nlm. nih.gov/pubmed/26919163
8. Zeng et al. Analysis of lncRNAs expression in UVB-induced stress responses of melanocytes, J Dermatol Sci 81(1):53-60, 2016.doi:10.1016/j.jdermsci.2015.10.019; Ghanizadeh et al. UV-B exposure reduces locomotor performance by impairing muscle function but not mitochondrial ATP production, J Exp Biol 219(Pt 1):96-102, 2016. 10.1242/jeb.131615; Patwardhan et al. Ultraviolet-B protective effect of flavonoids from Eugenia caryophylata on human dermal fibroblast cells, Pharmacogn Mag 11(suppl 3):S397-406, 2015. doi:10.4103/0973-1296.168979
9. Katiyar. Dietary proanthocyanidins inhibit UV radiationinduced skin tumor development through functional activation of the imune system, Mol Nutr Food Res 3, 2016. doi:10.1002/mnfr.201501026; Damiani et al. Understanding the connection between plateletactivating factor, a UV-induced lipid mediator of inflammation, immunesuppression and skin cancer, Prog Lipid Res 63 14-27 (Apr 9, 2016); doi:10.1016/j.plipres.2016.03.004; Kripke et al. Modulation ofimmune function by UV radiation, J Invest Dermatol 85(1 suppl):62s- 66s, 1985
10. Gu et al. Additive effect of heat on the UVB-induced tyrosinase activation and melanogenesis via ERK/p38/MITF pathway in human epidermal melanocytes, Arch Dermatol Res 306(6):583-90, 2014. doi:10.1007/ s00403-014-1461-y; Yanase et al. Possible involvement of ERK 1/2 in UVA-induced melanogenesis in cultured normal human epidermal melanocytes, Pigment Cell Res 14(2):103-9, 2001; Tagashira et al. UVB stimulates the expression of endothelin B receptor in human melanocytes via a sequential activation of the p38/MSK1/ CREB/MITF pathway, which can be interrupted by a French maritime pine bark extract through a direct inactivation of MSK1, PLoS One 10(6):e0128678, 2015. doi:10.1371/journal.pone.0128678; Mizutani et al. A single UVB exposure increases the expression of functional KIT in human melanocytes by up-regulating MITF expression. through the phosphorylation of p38/CREB, Arch Dermatol Res 302(4):283-94, 2010. doi:10.1007/s00403-009-1007-x; Kim et al. UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging, J Dermatol Sci 57(1):19-26, 2010. doi:10.1016/j. jdermsci.2009.10.008
11. Sample et al. Autophagy in UV damage response, Photochem Photobiol (12), 2016. doi:10.1111/php.12691;ncbi.nlm.nih.gov/ pubmed/27935061
12. Lindsey-Boltz. Bringing it all together: Coupling excision repair to the DNA damage checkpoint, Photochem Photobiol (11), 2016. doi:10.1111/php.12667; ncbi.nlm.nih. gov/pubmed/27861980
13. Zimmer et al. Unique co-existence of cold and solar urticaria and its efficient treatment, Br J Dermatol (12), 2015. doi:10.1111/ bjd.14354; Chong et al. Solar urticaria in Singapore: An uncommon photodermatosis seen in a tertiary dermatology center over a 10- year period, Photodermatol Photoimmunol Photomed 20(2):101-4, 2004; de Groot et al. Contact and photocontact allergy to octocrylene: A review, Contact Dermatitis 70(4):193-204, 2014. doi:10.1111/ cod.12205; Hanson et al. Sensitivity to multiple benzophenone sunscreen agents, Dermatitis 26(4):192-4, 2015. doi:10.1097/ DER.000000000000013114
14. Kim et al. UV-induced inhibition of adipokine production in subcutaneous fat aggravates dermal matrix degradation in human skin, Sci Rep 6:25616, 2016. doi:10.1038/srep25616; Fourtanier et al. Sunscreens containing the broad-spectrum UVA absorber Mexoryl SX prevent the cutaneous detrimental effects of UV exposure: A review of clinical study results, Photodermatol Photoimmunol Photomed 24(4):164-74, 2008. doi:10.1111/j.1600-0781.2008.00365.x; Lucas et al. Ultraviolet radiation, vitamin D and multiple sclerosis, Neurodegener Dis Manag 5(5):413-24, 2015. doi:10.2217/nmt.15.33
15. Lohan et al. Free radicals induced by sunlight in different spectral regions—In vivo vs. ex vivo study, Exp Dermatol (2), 2016. doi:10.1111/exd.12987; Darvin et al. Radical production by infrared A irradiation in human tissue, Skin Pharmacol Physiol 23(1):40-6, 2010. doi:10.1159/000257262; Zastrow et al, Light—Instead of UV protection: New requirements for skin cancer prevention, Anticancer Res 36(3):1389-93, 2016
16. Schroeder et al. What is needed for a sunscreen to provide complete protection, Skin Therapy Lett 15(4):4-5, 2010
17. Rai et al. Update on photoprotection, Indian J Dermatol 57(5):335-42, 2012. doi:10.4103/0019-5154.100472; Moyal. The development of efficient sunscreens, Indian J Dermatol Venereol Leprol 78(suppl 1):S31-4, 2012. doi:10.4103/0378-6323.97353
18. Cole et al. Metal oxide sunscreens protect skin by absorption, not by reflection or scattering, Photodermatol Photoimmunol Photomed 32(1):5-10, 2016. doi:10.1111/phpp.12214
19. Yang et al. Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme, J Applied Polymer Sci 92:3201–3210, 2004; http://physics.stackexchange.com/questions/105262/why-is-titanium-dioxidetransparentfor-visible-light-but-notfor-uv
20. Schreier et al. Early events of DNA photodamage, Annu Ver Phys Chem 66:497-519, 2015. doi:10.1146/annurev-physchem-040214-121821; ncbi.nlm.nih.gov/pubmed/25664840
21. Marchetti et al. Theoretical insights into the photo-protective mechanisms of natural biological sunscreens: Building blocks of eumelanin and pheomelanin, Phys Chem 18(5):3644-58, 2016. doi:10.1039/c5cp06767g; Kumasaka et al. Photoexcited states of UV absorbers, benzophenone derivatives, Photochem Photobiol 90(4):727-33, 2014. doi:10.1111/php.12257; Sugiyama et al. Opti-cal and electron paramagnetic resonance studies of the excited triplet states of UV-B absorbers: 2-Ethylhexyl salicylate and homomenthyl salicylate, Photochem Photobiol Sci 14(9):1651-9, 2015. doi:10.1039/ c5pp00138b; Tsuchiya et al, Photoexcited triplet states of UV-B absorbers: Ethylhexyl triazone and diethylhexylbutamido triazone, Photochem Photobiol Sci 14(4):807-14, 2015. doi:10.1039/c4pp00373j; Kikuchi et al, Excited states of menthyl anthranilate: A UV-A absorber, Photochem Photobiol Sci 12(2):246-53, 2013. doi:10.1039/ c2pp25190f
22. Krol et al. Photoprotective actions of natural and synthetic melanins, Chem Res Toxicol 11(12):1434-40 1998. ncbi. nlm.nih.gov/pubmed/9860484; D’Mello et al. Signaling pathways in melanogenesis, Int J Mol Sci 17(7), 2016. pii: E1144 doi:10.3390/ijms17071144; ncbi.nlm.nih. gov/pubmed/27428965; Vij et al. Bioinspired functionalized melanin nanovariants with a range of properties provide effective color-matched photoprotection in skin, Biomacromolecules 17(9):2912-9, 2016. doi:10.1021/acs. biomac.6b00740; ncbi.nlm.nih.gov/pubmed/27477067
23. Roussel et al. Measurement, analysis and prediction of topical UV fi lter bioavailability, Int J Pharm 478(2):804-10, 2015. doi:10.1016/j.ijpharm.2014.12.026; ncbi.nlm.nih.gov/pubmed/25526673; Chatelain et al. Skin penetration and sun protection factor of five UV filters: Effect of the vehicle, Skin Pharmacol Appl Skin Physiol 6(1):28-35, 2003; ncbi. nlm.nih.gov/pubmed/ 12566826
24. Vilela et al. Effect of ultraviolet filters on skin superoxide dismutase activity in hairless mice after a single dose of ultraviolet radiation, Eur J Pharm Biopharm 80(2):387-92, 2012. doi:10.1016/j.ejpb.2011.10.005; ncbi. nlm.nih.gov/pubmed/22036989
25. Zhang et al. Chlorination of oxybenzone: Kinetics, transformation, disinfectionbyproducts formation and genotoxicity changes, Chemosphere 154:521-7, 2016. doi:10.1016/j.chemosphere.2016.03.116; ncbi.nlm.nih.gov/pubmed/27085067
26. Schallreuter et al. Oxybenzone oxidation following solar irradiation of skin: Photoprotection versus antioxidant inactivation, J Invest Dermatol 106(3):583-6, 1996. ncbi.nlm.nih.gov/pubmed/8648199; J Moore et al. Direct evidence for oxidation of oxybenzone in the human epidermis, J Invest Dermatol 108, 1997; Hojerova’ et al, Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight, Int J
Pharm 408(1-2):27-38, 2011. doi:10.1016/j. ijpharm.2011.01.040; Nash et al. Relevance of UV filter/sunscreen product photostability to human safety, Photodermatol Photoimmunol Photomed 30(2-3):88-95, 2014. doi:10.1111/phpp.12113; Kim et al. Photolysis of the organic UV filter avobenzone combined with octyl methoxycinnamate by nano-TiO2 composites, J Photochem Photobiol B 149:196-203, 2015. doi:10.1016/j. jphotobiol.2015.05.011; Masnec et al. New option in photoprotection, Coll Antropol 34(suppl 2):257-62, 2010
27. Trossini et al. Theoretical study of tautomers and photoisomers of avobenzone by DFT methods, J Mol Model 21(12):319, 2015. doi:10.1007/s00894-015-2863-2; Tan et al. Excited-state dynamics of isolated and microsolvated cinnamate-based UV-B sunscreens, J Phys Chem Lett 5(14): 2464- 8, 2014. doi:10.1021/jz501140b
28. Schallreuter et al. Thioredoxin reductase— Its role in epidermal redox status, J Photochem Photobiol B 64(2-3):179-84, 2001. ncbi.nlm.nih.gov/pubmed/11744405; Schllreuter et al. Quinones are reduced by 6-tetrahydrobiopterin in human keratinocytes, melanocytes and melanoma cells, Free Radic Biol Med 44(4):538-46, 2008. ncbi.nlm. nih.gov/pubmed/17997383
29. Sundaram et al. The effect of UV radiation and sun blockers on free radical defense in human and guinea pig epidermis, Arch Dermatol Res 282(8):526-31, 1990
30. Krause et al. Sunscreens: Are they beneficial for health? An overview of endocrine disrupting properties of UV-fi lters, Int J Androl 35(3):424-36, 2012. doi:10.1111/j.1365-2605.2012.01280.x; ncbi.nlm.nih.gov/pubmed/22612478
31. Bens. Sunscreens, Adv Exp Med Biol 810:429-63, 2014. ncbi.nlm.nih.gov/ pubmed/25207381; Loden et al. Sunscreen use: Controversies, challenges and regulatory aspects, Br J Dermatol
165(2):255-62, 2011. doi:10.1111/j.1365- 2133.2011.10298.x; ncbi.nlm.nih.gov/ pubmed/21410663
32. Westerdahlet al. Sunscreen use and malignant melanoma, Int J Cancer 87(1):145-50, 2000. ncbi.nlm.nih.gov/pubmed/10861466
33. Ghiasvand et al. Sunscreen use and subsequent melanoma risk: A populationbased cohort study, J Clin Oncol 9, 2016. pii: JCO675934; ncbi.nlm.nih.gov/ pubmed/27621396
34. Sanchez et al. Sun protection for preventing basal cell and squamous cell skin cancers, Cochrane Database Syst Rev 7 CD011161, 2016. doi:10.1002/14651858. CD011161. pub2; ncbi.nlm.nih.gov/pubmed/27455163
35. Ibid Ref 30, Krause; Zhao et al. Regulation of microRNAs and the correlations of microRNAs and their targeted genes by zinc oxide nanoparticles in ovarian granulosa cells, PLoS One 11(5):e0155865, 2016. doi:10.1371/journal. pone.0155865; ncbi. nlm.nih.gov/pubmed/27196542
36. Nakamura et al. Effects of maternal and lactational exposure to 2-hydroxy-4-methoxybenzone on development and reproductive organs in male and female rat offspring, Birth Defects Res B Dev Reprod Toxicol 104(1):35-51, 2015. doi:10.1002/bdrb.21137; ncbi.nlm.nih.gov/ pubmed/25707689
37. Kermanizadeh et al. An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: Cytotoxicity, proinflammatory response, oxidative stress and genotoxicity, BMC Nephrol 14:96, 2013. doi:10.1186/1471-2369-14-96; ncbi.nlm. nih.gov/pubmed/23617532; Farcal et al. Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: First steps toward an intelligent testing strategy, PLoS One 10(5): e0127174, 2015. doi:10.1371/journal. pone.0127174; ncbi. nlm.nih.gov/pubmed/25996496
Deixar comentário
Para comentar é preciso fazer login no sistema.