Proteção Solar mais Segura – Parte 2
publicado em 10/04/2020
John Stakek
CoValence Laboratories, Inc. Chandler AZ, EUA
Shyam Gupta, PhD
Bioderm Research, Scottsdale AZ, EUA
Pesquisas recentes têm se concentrado nos meios utilizados pela natureza para proteger os organismos vivos contra a ação do Sol, desde os plânctons e as cianobactérias chegando aos seres humanos. Com os sistemas de aplicação tópica apropriados, alguns desses biomecanismos podem apresentar benefícios aos consumidores e às estratégias de marketing.
Recent research has focused on nature’s ways of protecting living organisms, from plankton and cyanobacteria to humans, from the sun. With the proper topical delivery systems, some of these biomechanisms may prove beneficial t o consumers and marketers
Investigaciones recientes se han centrado en las formas de la naturaleza de proteger los organismos vivos de los daños de Sol, eses organismos son el plancton y las cianobacterias, y los humanos. Con los sistemas de administración tópica adecuados, algunos de estos biomecanismos pueden ser beneficiosos para los consumidores y para las estrategias marketing.
Ácido Sinápico | Micosporinas | Scitoneminas | Urocanatos | Quitina | UCA mais quitina | Melanina | Fotossomos
Antioxidantes em Protetores Solares: Sim ou Não?
Ligação Química: um Vislumbre de Esperança
Considerando todos os temas e as preocupações descritos na Parte 1 deste artigo, vale a pena examinar como faremos para redirecionar os protetores solares. Pesquisas recentes vêm se concentrando nos caminhos da natureza para proteger os organismos vivos – desde os minúsculos plânctons e as cianobactérias até os seres humanos. E, com sistemas de liberação tópica adequados, alguns desses biomecanismos podem apresentar benefícios aos consumidores e ao pessoal de marketing.
Para visualizar o restante do artigo faça seu login ou então se cadastre gratuitamente e acesse todo o conteúdo disponível.
66. Baker et al. Ultrafast photoprotecting sunscreens in natural plants, J Phys Chem Lett 7 7(1):56-61, 2016. Doi: 10.1021/acs.jpclett.5b02474
67. Volkmann et al. A broadly applicable for extraction and characterization mycosporines and mycosporine-like amino acids of terrestrial, marine and freshwater origin. FEMS Microbiol Lett 255:286–295, 2006
68. Fernandes et al. Exploiting mycosporines as natural molecular sunscreens for the fabrication of UV-absorbing green materials, ACS Appl Mater Interfaces 5 7(30):16558-64, 2015. Doi: 10.1021/ acsami.5b04064; Colabella et al. UV sunscreens of microbial origin: Mycosporines and mycosporine-like aminoacids, Recent Pat Biotechnol (1/1/2015); ncbi.nlm.nih.gov/pubmed/25619303; Rastogi et al. Photoprotective compounds from marine organisms, J Ind Microbiol Biotechnol 37(6):537-58, 2010. Doi: 10.1007/s10295-010-0718-5
69. Ryu et al. Protective effect of porphyra-334 on UVA-induced photoaging in human skin fi broblasts, Int J Mol Med 34(3):796-803, 2014. Doi: 10.3892/ijmm.2014.1815; ncbi.nlm.nih.gov/pubmed/24946848
70. Proteau et al. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria, Experientia 49(9):825- 9, 1993; Rastogi et al, Ultraviolet radiation and cyanobacteria, J Photochem Photobiol B 141:154-69, 2014. Doi: 10.1016/j.jphotobiol. 2014.09.020
71. Ito et al. Protective effect of chitin urocanate nanofibers against ultraviolet radiation, Mar Drugs 13(12):7463-75, 2015. Doi: 10.3390/ md13127076; ncbi.nlm.nih.gov/pubmed/26703629
72. Wezynfeld et al. Is-Urocanic acid as a potential nickel(II) binding molecule in the human skin, Dalton Trans 43(8)3196-201, 2014. Doi: 10.1039/c3dt53194e; Gupta. Protection of skin from UV and peroxide, US Pat 7,993,630 (9/8/2011)
73. Konkol et al. Intravesical treatment with cis-urocanic acid improves bladder function in rat model of acute bladder infl ammation, Neurourol Urodyn 35(7):786-91, 2016. Doi: 10.1002/nau.22818; ncbi. nlm.nih.gov/pubmed/26175302; Arentsen et al, Antitumor effects of cis-urocanic acid on experimental urothelial cell carcinoma of the bladder, J Urol 187(4):1445-9, 2012. Doi: 10.1016/j.juro.2011.11.080
74. Malina. Urocanic acid and its role in the photoimmunomodulation process, Cas Lek Cesk 142(8):470-3, 2003); ncbi.nlm.nih.gov/pubmed/14626561
75. Kurimoto et al. Deleterious effects of cis-urocanic acid and UVB radiation on Langerhans cells and on induction of contact hypersensitivity are mediated by tumor necrosis factor-alpha, J Invest Dermatol 99(5):69S-70S, 1992
76. Walterscheid et al. Cis-Urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor, Proc Natl Acad Sci US 103(46):17420-5, 2006; Kaneko et al, cis-Urocanic acid stimulates primary human keratinocytes independently of serotonin or platelet-activating factor receptors, J Invest Dermatol 129(11):2567-73, 2009. Doi: 10.1038/jid.2009.129
77. Peltonen et al. Three randomized phase I/IIa trials of 5% cis-urocanic acid emulsion cream in healthy adult subjects and in patients with atopic dermatitis, Acta Derm Venereol 94(4):415-20, 2014. Doi: 10.2340/00015555-1735
78. Laihia et al. Topical cis-urocanic acid attenuates oedema and erythema in acute and subacute skin infl ammation in the mouse, Br J Dermatol 167(3):506-13, 2012. Doi: 10.1111/j.1365-2133.2012.11026.x; Jauhonen et al. Cis-Urocanic acid inhibits SAPK/JNK signaling pathway in UV-B exposed human corneal epithelial cells in vitro, Mol Vis 17:2311-7, 2011
79. Ito et al. Evaluation of the effects of chitin nanofi brils on skin function using skin models, Carbohydr Polym 101:464 70, 2014. Doi: 10.1016/j.carbpol.2013.09.074
80. Ito et al. Protective effect of chitin urocanate nanofi bers against ultraviolet radiation, Mar Drugs 13(12): 7463-75, 2015. Doi: 10.3390/ md13127076
81. Cole et al. Metal oxide sunscreens protect skin by absorption, not by reflection or scattering, Photodermatol Photoimmunol Photomed 32(1):5-10, 2016. Doi: 10.1111/phpp.12214
82. Karsili et al. Ab Initio Study of Potential Ultrafast Internal Conversion Routes in Oxybenzone, Caffeic Acid, and Ferulic Acid: Implications for Sunscreens. J Phys Chem A 118:11999–12010, 2014; Tarras-Wahlberg et al. Changes in ultraviolet absorption of sunscreens after ultraviolet irradiation, J Invest Dermatol 113:547–553, 1999; Bennet et al, Evaluation of UV radiation-induced toxicity and biophysical changes in various skin cells with photo-shielding molecules, Analyst 140(18):6343-53, 2015. Doi: 10.1039/c5an00979k
83. Bin et al. Fibronectin-Containing extracellular vesicles protect melanocytes against ultraviolet radiation-induced cytotoxicity, J Invest Dermatol S0022-202X(16)00461-9, 2016. Doi: 10.1016/j. jid.2015.08.001; Yamamoto et al. Melanin production through novel processing of proopiomelanocortin in the extracellular compartment of the auricular skin of C57BL/6 mice after UV-irradiation, Sci Rep 5:14579, 2015. Doi: 10.1038/srep14579
84. Kim et al. Reverse engineering applied to red human hair pheomelanin reveals redox-buffering as a pro-oxidant mechanism, Sci Rep 5:18447, 2015. Doi: 10.1038/srep18447; Napolitano et al. Pheomelanin-induced oxidative stress: Bright and dark chemistry bridging red hair phenotype and melanoma, Pigment Cell Melanoma Res 27(5):721-33, 2014. Doi: 10.1111/pcmr.12262
85. Premi et al. Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure, Science 347(6224):842-7, 2015. Doi: 10.1126/science.1256022; Abdel- Malek et al. Dark CPDs and photocarcinogenesis: The party continues after the lights go out, Pigment Cell Melanoma Res 28(4):373-4, 2015. Doi: 10.1111/pcmr.12381; Mandal et al. Feasibility of ionization-mediated pathway for ultraviolet-induced melanin damage, J Phys Chem B 119(42):13288-93, 2015. Doi: 10.1021/acs.jpcb.5b08750; Goto et al. Detection of UV-induced cyclobutane pyrimidine dimers by near-infrared spectroscopy and aquaphotomics, Scientific Reports 5:11808, 2015. Doi:10.1038/ srep11808
86. Sansinenea et al. An ultra-violet tolerant wild-type strain of melanin-producing Bacillus thuringiensis, Jundishapur J Microbiol 8(7):e20910, 2015. Doi: 10.5812/jjm.20910v2. eCollection 2015; ncbi.nlm.nih.gov/pubmed/26421136
87. Sun et al. Production of natural melanin by Auricularia auricula and study on its molecular structure, Food Chem 190:801-7, 2016. Doi: 10.1016/j.foodchem.2015.06.042
88. Arun et al. Extracellular melanin produced by mushroom Schizophyllum commune at a concentration of 50 μg/mL, melanina showed high free radical scavenging activity, Indian J Exp Biol 53(6):380-7, 2015
89. Manivasagan et al. Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32, Int J Biol Macromol 58:263-74, 2013. Doi: 10.1016/j.ijbiomac.2013.04.041
90. Bassot et al. Bioluminescence in scale-worm photosomes: The photoprotein polynoidin is specifi c for the detection of superoxide radicals, Histochem Cell Biol 104(3):199-210, 1995
91. Dushanov et al. A novel approach to simulate a charge transfer in DNA repair by an Anacystis nidulans photolyase, Open Biochem J 8:35-43, 2014. Doi: 10.2174/1874091X01408010035, eCollection 2014; Wijaya et al. Flavin adenine dinucleotide chromophore charge controls the conformation of cyclobutane pyrimidine dimer photolyase _-helices, Biochemistry 53(37):5864-75, 2014. Doi: 10.1021/bi500638b
92. https://cdn.shopify.com/s/fi les/1/0150/6346/fi les/Aspire-LIFE_Efficacy_Report_aug_2012_red_size.pdf. Acesso em: 21/2/2016
93. Kershaw et al. Repair of oxidative DNA damage is delayed in the Ser326Cys polymorphic variant of the base excision repair protein OGG1, Mutagenesis 27(4):501-10, 2012. Doi: 10.1093/mutage/ ges012; Janssen et al. DNA repair activity of 8-oxoguanine DNA glycosylase 1 (OGG1) in human lymphocytes is not dependent on genetic polymorphism Ser326/Cys326, Mutat Res 486(3):207-16, 2001
94. Bonneville et al. Laminaria ochroleuca extract reduces skin inflammation, J Eur Acad Dermatol Venereol 21(8):1124-5, 2007
95. tradeindia.com/fp1848904/Antileukine-6.html. Acesso em: 21/2/ 2016
96. Ulprospector. Venuceane. Disponível em: ulprospector.com/en/na/PersonalCare/Detail/1240/44349/Venuceane. Acesso em: 21/2/ 2016
97. Hayder et al. Sunscreen regulations and use of anti-inflammatory agents in sunscreens, Dermatol Online J 19(7):18969, 2013. Doi: ncbi.nlm.nih.gov/pubmed/24010515; Lim et al. What is the significance of anti-inflammatory activity of UV filters in sunscreens? JAAD 69(3):483, 2013; Sayre et al. Sun-protection factor confounded by anti-inflammatory activity of sunscreen agents? J Am Acad Dermatol 69:481, 2013
98. Afonso et al. Photodegradation of avobenzone: Stabilization effect of antioxidants, J Photochem Photobiol B 140:36 40, 2014. Doi: 10.1016/j.jphotobiol.2014.07.004; Reis et al. Synthesis, antioxidante and photoprotection activities of hybrid derivatives useful to prevent skin cancer, Bioorg Med Chem 22(9):2733-8, 2014. Doi: 10.1016/j. bmc.2014.03.017
99. Gause et al. UV blocking potential of oils and juices, Int J Cosmet Sci, 2015. Doi: 10.1111/ics.12296; ncbi.nlm.nih.gov/pubmed/26610885
100. Gause et al. UV-blocking potential of oils and juices, Int J Cosmet Sci 38(4):354-63, 2016. Doi: 10.1111/ics.12296; ncbi.nlm.nih.gov/pubmed/26610885
101 Sanad et al. Formulation of a novel oxybenzone-loaded nanostructured lipid carriers (NLCs), AAPS PharmSciTech 11(4):1684-94, 2010. Doi: 10.1208/s12249-010-9553-2; Fang et al. Nanostructured lipid carriers (NLCs) for drug delivery and targeting, Recent Pat Nanotechnol 7(1):41-55, 2013
102 . Saewan et al. Natural products as photoprotection, J Cosmet Dermatol 14(1):47-63, 2015. Doi: 10.1111/jocd.12123
103. Wu et al. Nanodiamonds protect skin from ultraviolet B-induced damage in mice, J Nanobiotechnology 13:35, 2015. Doi: 10.1186/ s12951-015-0094-4
104. Functionalization of Carbon Nanomaterials, Thakur and Thakur, eds, CRC Press, 2016; Li et al. Bingel–Hirsch reaction on Sc2@ C66: A highly regioselective bond neighboring to unsaturated linear triquinanes, J Phys Chem C 119:(46)26196–26201, 2015. Doi: 10.1021/acs.jpcc.5b08698
105. Silpa et al. Nanotechnology in cosmetics: Opportunities and challenges, J Pharm Bioallied Sci 4(3):186–193, 2012. Doi: ncbi.nlm.nih.gov/pmc/articles/PMC3425166; Hsu et al. Molecular dynamics simulations predict the pathways via which pristine fullerenes penetrate bacterial membranes, J Phys Chem B 120(43):11170-11179, 2016. Doi: ncbi.nlm.nih.gov/pubmed/27712070; Lens, Recent progresses in application of fullerenes in cosmetics, Recent Pat Biotechnol 5(2):67-73, 2011. Doi: ncbi.nlm.nih.gov/pubmed/21619548
106. Tolbert et al. New hybrid organic/inorganic polysilsesquioxane-silica particles as sunscreens, ACS Appl Mater Interfaces 8(5):3160-74, 2016. Doi: 10.1021/acsami.5b10472
107. Osterwalder et al. The long way toward the ideal sunscreen—Where we stand and what still needs to be done, Photochem Photobiol Sci 9(4):470-81, 2010. Doi: 10.1039/b9pp00178f; personal-care.basf.com/docs/press_center-pressemeldungen-2012/cossma_sonnenschutzmittel_excl_062012_en?sfvrsn=0
108. http://gcimagazine.texterity.com/gcimagazine/january_february_2016?pg=40#pg40; Rogers et al. A new day for sun care, Global Cosm Indust 32-35, 2016. Disponível em: http://gcimagazine.texterity.com/gcimagazine/january_february_2016?pg=36#pg36. Acesso em: 24/2/2016
Deixar comentário
Para comentar é preciso fazer login no sistema.