Extrato Vegetal da Biodiversidade Brasileira com Atividade “Retinoid-Like”
publicado em 04/05/2020
Gustavo de Campos Dieamant, Samara Eberlin, Maria Del Carmen Velazquez Pereda, Lilian Mussi, Cecília Nogueira, Gustavo Facchini, Márcio Antonio Polezel
Chemyunion Química Ltda., Sorocaba SP, Brasil
Luiz Cláudio Di Stasi
Universidade Estadual Paulista - Unesp, Botucatu SP, Brasil
Neste artigo os autores descrevem as atividades antioxidante, anti-inflamatória e “retinoid-like” do extrato de Bidens pilosa L. obtido por meio de extração em dióxido de carbono supercrítico.
In this article the authors describe the antioxidant, anti-inflammatory and retinoid-like of the extract of Bidens pilosa L. obtained by extraction with supercritical carbon dioxide.
En este artículo los autores describen los antioxidantes, anti-inflamatórios y “retinoid-like” del extracto de Bidens pilosa L. obtenido por extracción con dióxido de carbono supercrítico.
Objetivos
Materiais e Métodos
Resultados
Discussão
Conclusão
Bidens pilosa L. (Asteraceae), conhecida popularmente como picão-preto ou carrapicho-de-picão, caracteriza-se como uma erva de pequeno porte, que apresenta folhas verdes brilhantes e produz pequenas flores amarelas e frutos pretos. Distribui-se amplamente pela Floresta Amazônica e em outras áreas tropicais, como as demais partes da América do Sul, da África, do Caribe e das Filipinas. Em alguns países, dada sua alta ocorrência, é considerada como erva daninha.1-6
Historicamente, o picão-preto apresenta vasta aplicação. Nas diversas regiões da Amazônia, o picão-preto é utilizado popularmente para o tratamento da febre aftosa, angina, diabetes, desordens menstruais, diversos tipos de hepatite, laringites, constipação intestinal e processos inflamatórios internos e dermatológicos. Além disso, é comumente utilizada na medicina fitoterápica peruana como adjuvante no tratamento de hepatite, conjuntivites, abscessos, infecções fúngicas e prevenção da perda de peso repentina em crianças.7-9 No Brasil, por sua vez, utilizasse a planta para alívio da febre, malária, obstrução hepática e demais desordens biliares, diabetes, tonsilite, desordens vaginais e infecções.10-12 Externamente, extratos de picão-preto são utilizados para o tratamento de feridas, infecções micóticas, úlceras diabéticas, picadas de insetos e hemorroidas.13-14
O picão-preto tem sido objeto de recentes pesquisas científicas que suportam suas aplicações na medicina fitoterápica e na popular. Diferentes grupos de pesquisa têm demonstrado o potencial anti-inflamatório e imunomodulador de Bidens pilosa, especialmente por meio de suas capacidades de inibir a produção de citocinas pró-inflamatórias e de impedir a síntese de prostaglandinas e a atividade de ciclo-oxigenase induzida.1-5,15 Pesquisas recentes também demonstram que extratos obtidos
Para visualizar o restante do artigo faça seu login ou então se cadastre gratuitamente e acesse todo o conteúdo disponível.
1. YM Chiang et al. Ethyl caffeate suppresses NF-kappaB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br J Pharmacol 146(3):352-63, 2005
2. TB Nguelefack et al. Relaxant effects of the neutral extract of the leaves of Bidens pilosa Linn on isolated rat vascular smooth muscle. Phytother Res 19(3):207-10, 2005
3. CL Chang et al. The distinct effects of a butanol fraction of Bidens pilosa plant extract on the development of Th1 mediated diabetes and Th2-mediated air way inflammation in mice. J Biomed Sci 12(1):79-89, 2005
4. RL Pereira et al. Immunosuppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L. Immunopharmacology 43(1):31–7, 1999
5. AK Jager et al. Screening of Zulu medicinal plants for prostaglandinsynthesis inhibitors. J Ethnopharmacol 52(2):95 100, 1996
6. A Alvarez et al. Gastric antisecretory and antiulcer activities of na ethanolic extract of Bidens pilosa L. var. radiate Schult. Bip J Ethnopharmacol 67(3):333–40, 1999
7. HW Chih et al. Anti-inflammatory activity of Taiwan folk medicine “ham-hong-chho” in rats. Am J Chin Med 23(3–4):273–78, 1995
8. C Lans. Comparison of plants used for skin and stomach problems in Trinidad and Tobago with Asian ethnomedicine. J Ethnobiol Ethnomedicine 3(1):3, 2007
9. AH Atta et al. Evaluation of some medicinal plant extracts for antidiarrhoeal activity. Phytother Res 19(6):481-5, 2005
10. AA Avalos et al. Influence of extracts from leaves and stem of Bidens pilosa on experimental ulcerogenesis in rats. Rev Cubana Farm 18(2):143–50, 1984
11. P Sundararajan et al. Studies of anticancer and antipyretic activity of Bidens pilosa whole plant. Afr Health Sci 6(1):27-30, 2006
12. C Abajo et al. In vitro study of the antioxidant and immunomodulatory activity of aqueous infusion of Bidens pilosa. J Ethnopharmacol 93(2-3):319-23, 2004
13. YM Chiang et al. Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. J Ethnopharmacol 95(2-3):409- 19, 2004
14. JJ Rojas et al. Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections. BMC Complement Altern Med 6:2, 2006
15. N Yoshida et al. Bidens pilosa suppresses interleukin-beta-induced cyclooxygenase-2 expression through the inhibition of mitogen activated protein kinases phosphorylation in normal human dermal fibroblasts. J Dermatol 33(10):676-83, 2006
16. PV Tan et al. Effects of methanol, cyclohexane and methylene chloride extracts of Bidens pilosa on various gastric ulcer models in rats. J Ethnopharmacol 73(3):415–21, 2000
17. CK Wat et al. Ultraviolet-mediated cytotoxic activity of phenylheptatriyne from Bidens pilosa L. J Nat Prod 42(1):103–11, 1979
18. HL Yang et al. Protection from oxidative damage using Bidens pilosa extracts in normal human erythrocytes. Food Chem Toxicol 44(9):1513-21, 2006
19. YM Chiang et al. Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa, Journal of Ethnopharmacology 95:409-419, 2004
20. FQ Oliveira et al. New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. J Ethnopharmacol 93(1):39-42, 2004
21. T Arnason et al. Photosensitization of Escherichia coli and Saccharomyces cerevisiae by phenylheptatriyne from Bidens pilosa. Can J Microbiol 26(6):698–705, 1980
22. VF Andrade-Neto et al. Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil. Phytother Res 18(8):634-639, 2004
23. JA Duke et al. The Green Pharmacy: New Discoveries in Herbal Remedies for Common Diseases and Conditions from the World´s Foremost Authority on Healing Herbs, 1a. ed, St Martins Press, 1999
24. PK Lemotte et al. Phytanic acid is a retinol X receptor ligand. Eur J Biochem 236:328-333, 1996
25. S Moore et al. Docosahexaenoic acid synthesis in human skin fibroblastos involves peroxisomal retroconversion of tetracosahexaenoic acid. J Lipid Res 36:2433-2443, 2005
26. D Stuettgen. Zur lokalbehandlung von keratosen mit vitamin A-Süre. Dermatologica 124:65–80, 1962
27. R Baer. Untersuchungen u¨ ber die wirkung von vitamin-A-Sa¨ure. Dermatologica 124:192–195, 1962
28. U Runne et al. Perorale applikation zweier derivate der vitamin A-Sa¨ure zur internen psoriasis-therapie (13-cisbeta vitamin A-Saüre und vitamin A-saüre-a¨thylamid). Arch Dermatol Res 247:171–180, 1973
29. TC Roos et al. Retinoid Metabolism in the Skin. Pharmacol Ver 50:315-333, 1998
30. C Stefanaki et al. Topical retinoids in the treatment of photoaging. J Cosm Dermatol 4:130-134, 2005
31. L Rittié et al. Anti-aging effects of retinoids and mechanisms of actions. In: Retinoids and Carotenoids in Dermatology (Vahlquist A, Duvic M, eds.). Informa Healthcare, New York, p. 77-101, 2007
32. SKC Hung. Topical retinoids in dermatology. Medical Progress 5:15-20, 1999
33. GJ Fisher, JJ Voorhees. Molecular mechanisms of retinoid actions in skin. Faseb J 10:1002–1013, 1996
34. N Lowe, R Marks. Retinoids, a clinician´s guide. Martin Dunitz, 1995
35. DR Azulay. Atualização em retinóides. www.dermato-santacasa.com.br/producao/azulay_retinoides.pdf, acesso em 20/11/07
36. DWS Harris et al. Topical retinoic acid in the treatment of fine acne scarring. Br J Dermatol 125:81-82, 1991
37. Mohamed RS. Extração e fracionamento de produtos de ocorrência natural com fluídos supercríticos. Ciênc Tecnol Aliment Campinas Dic 17(4), 1997
38. E Reverchon, I De Marco. Supercritical fluid extraction and fractionation of natural matter, J of Supercrital Fluids 38:146-166, 2006
39. I Gamlieli-Bonshtein et al. Selective separation of cis-trans geometrical isomers of β-carotene via CO2 supercritical fluid extraction. Biotech Bioeng 80:169–174, 2002
40. Smith, R.M. Supercritical fluids in separation science-the dreams, the reality and the future, J Chromatogr A 856:83 115, 1999
41. MW Pfaffl A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2000 2007, 2001
42. Gregory E. Miller, Edith Chen. Life stress and diminished expression. of genes encoding glucocorticoid receptor and 2 adrenergic receptor in children with asthma. PNAS 103(4):5496–5501, 2006
43. DJ McCarthy, GK Smyth. Testing significance relative to a foldchange threshold is a TREAT. Bioinformatics 25(6):765-71, 2009
44. F Deba et al. Herbicidal and fungicidal activities and identificátion of potential phytotoxins from Bidens pilosa L. var. radiate Scherff, Weed Biology and Management 7:77-83, 2007
45. S Cuzzocrea et al. Antioxidant therapy: a new pharmacological approach in shock, infl ammation, and ischemia/reperfusion injury. Pharmacol Rev 53:135-59, 2001
46. FP Gasparro et al. A review of sunscreen safety and effi cacy. Photochem Photobiol 68:243-56, 1998
47. L Baumann. Skin ageing and its treatment. J Pathol 211(2):241-251, 2007
48. K Scharffetter-Kochanek et al. Photoaging of the skin from phenotype to mechanisms. Exp Gerontolol 35(3):307-316, 2000
49. GJ Burbach et al. Cytokine in the skin. In: The Biology of the Skin (Freinkel RK, Woodley DT, eds.). The Pathernon Publishing Group, New York. p. 299-331, 2001
50. S Singh, RA Swerlick. Structure and function of the cutaneous vasculature. In: The Biology of the Skin (Freinkel RK, Woodley DT, eds.). The Pathernon Publishing Group, New York. p. 177-189, 2001
51. TA Lugar, S Beissert, T Schwartz. The epidermal cytokine network. In: Skin immune system (Bos JD, ed.). 2nd ed. CRC Press, New York. p. 271-310, 1997
52. BS Bauer et al. Latent and active transforming growth factor β1 released from genetically modified keratinocytes modulates extracelular matrix expression by dermal fibroblasts in a coculture system. J Invest Dermatol 119:456-463, 2002
53. DR Eduards et al. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J 6(7):1899-1904, 1987
54. V Frei et al. Activation of fibroblast metabolism in a dermal and skin equivalent model: a screening test for activity of peptides. Int J Cosm Sci 20:159-73, 1998
55. JT Gallagher. The extended family of proteoglycans: social residentes of the pericellular zone. Curr Opin Cell Biol 1:1201-18, 1989
56. J Uitto. Connective tissue biochemistry of the aging dermis. Age-related alterations in collagen and elastin. Dermatol Clin 4:433-46, 1986
57. I Nakajima et al. Adipose tissue extracellular matrix. Differentiat 63:193-200, 1998
58. L Robert, J Labat-Robert. Ageing of connective tissues: from genetic to epigenetic mechanisms. Biogerontol 1:123 31, 2000
59. ML Lupo et al. Novel eye cream containing a mixture of human growth factors and cytokines for periorbital rejuvenation. J Drugs Dermatol 6:725-9, 2007
60. S Pastore et al. The Epidermal Growth Factor Receptor System in Skin Repair and Inflammation. J of Invest Derm 128:1365–1374, 2008
Deixar comentário
Para comentar é preciso fazer login no sistema.