Materiais Pequenos, Menores e Nanomateriais: um Benefício Invisível
publicado em 08/05/2020
Johann W. Wiechers, PhD
JW Solutions, Gouda, Holanda
Apesar de os nanomateriais estarem sendo utilizados em cosmético há muito tempo, os consumidores creem que esses materiais podem se constituir num risco para a saúde, devido à sua possível penetração na pele. O presente artigo avalia os benefícios, assim como a penetração, na pele, das nanopartículas usadas em cosméticos.
Although nanomaterials have been used in cosmetics for some time, consumers believe they may constitute a health risk due to their posaible penetration into the skin. The present article evaluates the benefits as well as the skin penetration of nanoparticles used in cosmetics.
Aunque los nanomateriales han sido usados en cosméticos desde hace algún tiempo, los consumidores creen que pueden constituir un riesgo para la salud debido a su posible penetración en la piel. El presente artículo evalúa los beneficios, así como la penetración en la piel de las nanopartículas usadas en cosméticos.
Formulando com Nanopartículas
Segurança das Nanopartículas
Avaliar a Penetração na Pele
Brechas na Compreensão
Condições da Vida Real
Implicações da Liberação
Conclusões
A maioria dos materiais da nanoescala, sejam projetados ou naturais, caem em uma de quatro categorias: 1) óxidos metálicos, como o zinco e o titânio usados em cerâmicas, agentes químicos para polimento, revestimento resistente a raspagem, cosméticos e filtros solares; 2) nanoargilas, que têm origem natural e são partículas de argila em forma de placa que fortalecem ou enrijecem os materiais ou os transformam em retardadores de chamas; 3) nanotubos usados em revestimentos para dissipar ou minimizar a eletricidade estática; e 4) pontos quânticos, utilizados em medicina de exploração ou em automontagem de estruturas nanoeletrônicas.
Geralmente, as nanopartículas usadas em cosméticos, como dióxido de titânio e óxido de zinco, pertencem à primeira categoria e são empregadas como filtros solares. Ambos os tipos de nanopartículas são desenhadas e têm uma forma regular; é essa forma regular que é útil nos cosméticos. Pelo menos dois aspectos são importantes aqui: o tamanho absoluto das nanopartículas, assim como suas propriedades de superfície, que determinam sua eficácia como filtros solares protetores.
O tamanho da partícula determina a área de superfície relativa. A área de superfície de um centímetro cúbico de um material
Para visualizar o restante do artigo faça seu login ou então se cadastre gratuitamente e acesse todo o conteúdo disponível.
1. TE Bell. Undestanding risk assessment of nanotechnology, available at www.nano.gov/Undestanding_Risk_Assessment.pdf,acessed Dec 20, 2009
2. U Diebold. The surface science of titanium dioxide, Surface Science Reports 48:53-229, 2003
3. JP Hewitt. Inorganic sunscreens, in: ML Schlossmann, ed., The Chemistry and Manufacture of Cosmetics, Third Edition, volume III, book one, Allured Business Media: Carol Stream, IL, USA, ch 32, pp 527-550, 2002
4. G Miller. Nanomaterials, sunscreens and cosmetics: Small ingredients, big risks, Friends of the Earth Australia Nanotechnology project with contributions from L. Archer, E Pica, D Bell, R Senjen, G Kimbrell (May 2006) available at http://nano.foe.org.au/filestore2/download/125/FoEA%20nano%20cosmetics%20report%20web.pdf, accessed Dec 20, 2008
5. PJA Borm et al. The potential risks of nanomaterials: A review carried out for ECETOC, Particle and Fibre Toxicology 3:11, 2006 available at www.pubmedcentral.nih.gov/picrendler.fcgi?artid=1584248&blobtype=pdf, accessed Dec 20, 2009
6. GJ Nohynek, J LAdemann, C Ribaud, MS Roberts. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety, Crit Rev Toxicol 37:251-277, 2007
7. GJ Nohynek, EK Dufour, MS Roberts. Nanotechnology, cosmetic and the skin: is there a health risk? Skin Pharmacol Physiol 21:136- 149, 2008
8. JW Wiechers. Nanotechnology and skin delivery: Infinitely small or infinite possibilities? Cosm & Toil 124(1):28-39, 2009
9. B Baroli. Nanoparticles and skin penetration. Are there any potential toxicological risks? J Verbr Lebensm 3:330-331, 2008
10. B Baroli, MG Ennas, F Loffredo, M Isola, R Pinna, MA Lopez- Quintela. Penetration of metallic nanoparticles in human fullthickness skin, J Invest Dermatol 127:1701-1712, 2007
11. F Filon Larese et al. Human skin penetration of silver nanoparticles through intact and damaged skin, Toxicol 255:33-37, 2008
12. E Gontier et al. Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study, Nanotoxicol 2:216-231, 2008
13. A Zvyagin, X Zhao, A Gierden, W Sanchez, JA Ross, MS Roberts. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo, J Biomed Optics 13:064031, 2008
14. LJ Mortensen, G Oberdiirster, AP Pentland, LA DeLouise. In vivo skin penetration of quantum dot nanoparticles in the murine model: The effect of UVR, Nano Lett 8: 2779-2787, 2008
15. JP Ryman-Rasmussen, JE Riviere, NA Monteiro-Riviere. Penetration of intact skin by quantum dots with diverse physicochemical properties, Toxicol Sci 91:159-165, 2006
16. X Wu, K Landfester, A Musyanovych, RH Guy. Disposition of charged nanoparticles after their topical application to the skin, Skin Pharmacol Physiol 23:117-123, 2010
17. Anonymous. NIA comment on the publication In vivo skin penetration of quantum dot nanoparticles in the murine model: The effect of UVR, 20 August 2009, available at: www.nanatechia.arg/fib/tmp/cmsfiles/File/NIA_Press_FAQs_Opinions/NLA_SunscreenSkinPenetration_Commen... (accessed Dec 23, 2009)
18. LW Zhang, NA Monteiro-Riviere. Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin, Skin Pharmacol Physiol 21:166-180, 2008
19. JG Rouse, J Yang, JP Ryman-Rasmussen, AR Barron, NA Monteiro-Riviere. Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin, Nano Lett 7:155-160, 2007
20. J Lademann et al. Nanoparticles-An effi cient carrier for drug delivery into the hair follicles, Eur J Pharm Biapharm 66:159-164, 2007
21. X Wu, P Griffin, GJ Price, RH Guy. Preparation and in vitro evaluation of topical formulations based on polystyrene poly-2-hydroxyl methacrylate nanoparticles, Mol Pharm 6:1449-1456, 2009
22. LW Zhang, WW Yu, VL Colvin, NA Monteiro-Riviere. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes, Toxical Appl Pharmacol 228:200-211, 2008
23. AO Gamer, E Leibold, B van Ravenzwaay. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin, Toxicol in vitro 20: 301-307, 2006
24. X Wu, B Biatry, C Cazeneuve, RH Guy. Drug delivery to the skin from sub-micron polymeric particle formulations: Influence of particle size and polymer hydrophobicity, Pharm Res 26:1995-2001, 2009
25. F Larese, G Adami, M Vernier, G Maina, N Renzi. In vitro percutaneous absorption of metal compounds, Toxicol Lett 170:49-56, 2007
26. P Filipe, JN Silva, R Silva, JL Cirne de Castro, M Marques Gomes, LC Alves, R Santus, T Pinheiro. Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption, Skin Pharmacol Physiol 22:266-275, 2009
27. J Shim, HS Kang, W-S Park, S-H Han, J Kim, I-S Chang. Transdermal delivery of minoxidil with block copolymer nanoparticles, J Control Rel 97:477-484, 2004
28. SS Guterres, MP Alves, AR Pohlmann. Polymeric nanoparticles, nanospheres and nanocapsules for cutaneous applications, Drug Target Insights 2:147-157, 2007
29. HH Joo, HY Lee, JC Kim. Stability, release property and skin penetration of stearic acid nanopal1icles, Mol Cryst Liq Cryst 508: 137-149, 2009
30. EB Souto, RH Müller. Challenging cosmetics-Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), in: JW Wiechers, ed., Science and Applications of Skin Delivery Systems, Allured Business Media: Carol Stream, IL, USA (2008) ch 13:pp 227-250
31. SA Wissing, RH Müller. Solid lipid nanoparticles as carriers for sunscreens: In vitro release and in vivo skin penetration, J Control Rel 81:225- 233, 2002
32. RH Müller, M Radtke, SA Wissing. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations, Adv Drug Del Rev 54:S131-S155
Deixar comentário
Para comentar é preciso fazer login no sistema.